. Advantages of the distributed Implementation
A of the Monte Carlo method in neurobiology

simulation

Authors:

Alexander Kovalenko[1]; Oleg Kovalenko[1]; Dmitry
Rusakov[2]; Kaiyu Zheng[2]

[1] AMC Bridge LLC, http://www.amcbridge.com

[2] University College London, http://www.ucl.ac.uk

1. Introduction

Matlab is often the tool of choice for scientist when it comes to creating and
prototyping of numerical models. It’s easy to use and powerful scripting language
combined with rich library of functions and debugging capabilities makes for a platform
that allows researchers to receive results quickly. At the same time when tasks are
moved from the initial prototyping stage to a stage when more massive data should be
processed Matlab may have its limitations especially when it comes to performance
optimization, ability to run on a cluster or cost associated with multiple licenses needed
for clustering.

This paper’s goal is to demonstrate the performance benefits from using distributed
algorithms and computational power of clusters and GPUs for Monte-Carlo method in
neurobiology simulation.

2. Scientific background

Information processing and storage by the brain neural networks involve rapid release of
signaling molecules such as glutamate from a neuron which diffuse across the interstitial
space and bind specific receptors on the membrane of the target neuron. In most cases,
this signal transfer occurs at specialized microscopic contacts, termed synapses, which
thus constitute basic elements of the brain neural network "wiring", akin to computer
circuits. However, there has been an increasing body of experimental evidence
implicating other modes of information transfer in the brain, such as volume
transmission of molecular signals where the diffusing signaling molecules binds not only
to the target neuron but also other neurons and cells in the neighbouring vicinity.
Organizational principles and basic biophysical determinants of this non-conventional
type of signaling are only beginning to emerge.

In many neural circuits, activity-dependent changes in the network connectivity (which
are hypothesized to be the basis of memory formation) involve NMDA receptors
(NMDARs), a membrane protein which can sense the excitatory neurotransmitter
glutamate with high affinity. It has emerged that NMDARs could be activated by
glutamate escaping from relatively remote synaptic connections, thus enabling
spatiotemporal integration of rapid signals in the brain, in parallel to the classical "wired"
transmission. To understand fundamental properties of this mode of information

AMC Bridge LLC 10 Lake Shore Drive S. www.amcbridge.com Phone: 973-895-1724

Randolph, NJ 07869 contact@amcbridge.com Fax: 973-895-5376

Advantages of the distributed Implementation
of the Monte Carlo method in neurobiology simulation AMC Bridge LLC

transfer we have been exploring a Monte Carlo model of a realistic, three-dimensional
brain neuropil fragment which incorporates multiple synaptic connections embedded
in a tortuous extracellular space. Our preliminary results predict that discharges of
glutamate from individual synapses are very efficient (10-30 times more efficient than
glutamate "leakage") in providing sustained activation of NMDARs across the space.
The level of such activation could therefore retain information about local excitatory
activity in the network.

3. Problem statement

Matlab implementation of Monte-Carlo method in neurobiology simulation is quite
good only for relatively small simulations. The performance of Matlab application for
large simulation is very poor. The purpose of the project was creating a fast and
scalable application starting from existing Matlab application.

Two approaches were used to obtain the performance gains. The first one uses C++,
OpenMP and MPI to run the application on the cluster, the second — CUDA to run the
application on the GPU.

Each of the above approaches can be divided into the following steps:

1. Converting existing Matlab code to the C++ without any algorithm changes.

2. Algorithm optimization and modification to suite the chosen technology.

Since an existing serial algorithm of Monte-Carlo method for neurobiology simulation
did not fit the paralleled model of execution, it was redesigned in the step 2.

5. Performance results

The below performance results are obtained from the sequential implementing the
described in the above paragraph steps.

The Figure A shows the performance improvements after the direct translation from
m-code to C++. It can be seen, that for relatively small simulations the speed-up is up
to 4x, for larger simulations, the speed-up is 2x-2.5x.

The algorithm optimization from the step 2, gave additional 4x speed-up. As a result,
the optimized C++ application is about 10x faster than initial Matlab simulation.

The Figures B, C demonstrate the scalability of the distributed implementation using
both: C++ MPI and C++ OpenMP + MPI schemes for two different simulations (100K
iterations of 21 sites and 5K particles; 100K iterations of 21 sites and 200K particles).
As it can be seen from Figure B, the parallelization gives the following speed-up
compared to the serial C++ code: 1.8x on 2 cores, 2.8x on 4 cores, 2.1x on 8 cores for
C++ MPIl scheme and 1.4x on 2 cores, 1.7x on 4 cores, 2.4x on 8 cores for C++ OpenMP

AMC Bridge LLC 10 Lake Shore Drive S. www.amcbridge.com Phone: 973-895-1724

Randolph, NJ 07869 contact@amcbridge.com Fax: 973-895-5376

Advantages of the distributed Implementation
of the Monte Carlo method in neurobiology simulation

AMC Bridge LLC

MPI scheme. Figure C gives the following speed-up: 1.4x on 2 cores, 1.5x on 4 cores,
2.4x on 8 cores for C++ MPI scheme and 1.4x on 2 cores, 2.4x on 4 cores, 4.6x on 8 cores
for C++ OpenMP MPI scheme.

The Figure D demonstrates the performance comparison of running the C++ MPI, C++
OpenMP MPIl and CUDA applications for the larger configuration file — CUDA application
is 4.2x faster than C++ OpenMP MPI app and 8.1x faster than C++ MPI app.

10000
1000
o [l : & @ C++app
100 -
L3
B | * B Matlab
L
o ¢
10
1
100 1000 10000 100000
Number of bodies in the simulation
Figure A
250
(8]
[
v
S 200
)
o
£
‘B 150
(]
L
=}
Y
o
c 100
2
=
o
>
o 50
S
o
=
0
1node, 1 1 node, 2 1 node, 4 2 nodes, 8
core cores cores cores
m C++ MPI 195 110 70 95
B C++ OpenMP MPI 200 140 120 85
Figure B

Phone: 973-895-1724
Fax: 973-895-5376

10 Lake Shore Drive S. www.amcbridge.com

contact@amcbridge.com

AMC Bridge LLC

Randolph, NJ 07869

Advantages of the distributed Implementation

of the Monte Carlo method in neurobiology simulation AMC Bridge LLC
10000
(8]
(V]
(7]
c
o 8000
=)
8
£
= 6000
]
i -
=)
© 4000
[=
1]
®
= 2000
©
s
o 0
1node, 1 1 node, 2 1 node, 4 2 nodes, 8
core cores cores cores
M C++ MPI 8230 6000 5400 3500
B C++ OpenMP MPI 8300 5900 3400 1800
Figure C
4000
(8]
(]
“ 3200
c
2
hd
e
=]
£ 2400
[7,]
(V]
-
hd
[T
o
.s 1600
e
o
=]
T
8 800
(]
'—
0
C++ MPI C++ OpenMP MPI GPU
Figure D

The implemented C++ MPI and C++ OpenMP MPI applications were run under dual
node quad core Intel Xeon E5440 2.83GHz 4 GB RAM cluster. The CUDA application was
run under NVIDIA GeForce GTX 560M. Test execution time was measured over multiple
runs and then averaged.

AMC Bridge LLC 10 Lake Shore Drive S. www.amcbridge.com Phone: 973-895-1724

Randolph, NJ 07869 contact@amcbridge.com Fax: 973-895-5376

Advantages of the distributed Implementation
of the Monte Carlo method in neurobiology simulation AMC Bridge LLC

Since Matlab provides a very powerful scripts for mathematical modeling it is a very
common tool to create any prototype. But very often such simplicity has its drawback
—the created application is implemented in a suboptimal way.
Algorithm optimization and implementation it using C++ can give a huge speedup. The
further parallelization and running on cluster gives even more performance gains.
For relatively small simulations we can see that for C++ MPI application the execution
on single quad core node is even faster than execution on both nodes. This can be
explained by the fact that MPI communication is much faster on the shared memory
system (if the program is executed only under single node, then all used memory is
shared) than under distributed memory system (case, when both nodes are used).
Since each iteration of the first simulation is very light, the overhead of MPI
communication kills the performance gains from using 4 extra cores. However, for large
simulation, the distributed algorithm scales quite well.
Using OpenMP (to parallelize the work inside the node) together with MPI (to provide
communications between nodes) reduces the number of communications between
nodes. In the case when the number of particles is large (and hence the number of
communication between nodes is large) the performance improvement is tangible: for
the large simulation usage of the OpenMP + MPI scheme gives 2x speed-up on 2 nodes,
8 cores cluster comparing to C++ MPI implementation. Note, when the number of
communications is low, MPI — based application can be more efficient than the
OpenMP + MPI.
For the simulation with relatively small number of particles the GPU version gives poor
results. But when the number of the particles grows, GPU usage can give the power of
a cluster in a single desktop.
As a result, below is the list of recommendations for choosing approach for
implementing the app:
® Select Matlab for prototyping and/or for applications which are not performance
critical. This approach allows you to minimize the total time needed for creating the
app, but requires expenses on Matlab license(s).
® Select sequential C++ for applications which will be actively using by lots of users
and require good performance. This approach is cheap for experienced developer,
but requires more time for creating the app comparing to the above one.
® Select C++ MPI for applications which will work with a large amount of data and
use algorithms easy enough to be parallelized. This is expensive development but
sometimes this can be the only option.
® Select GPU if your app needs to have extremely high performance and will not
work with large amount of data and third-party libraries. This approach is extremely
expensive for development and has lots of limitations.

AMC Bridge LLC 10 Lake Shore Drive S. www.amcbridge.com Phone: 973-895-1724

Randolph, NJ 07869 contact@amcbridge.com Fax: 973-895-5376

